已知方程2x3-4x2-3x+1=0,在区间长度为1的条件下,下列说法不正确的是A.方程在区间(-1,0)内有根B.方程在区间(0,1)内有根C.方程在区间(1,2)内有根D.方程在区间(2,3)内有根
网友回答
C解析分析:令f(x)=2x3-4x2-3x+1,首先计算f(-1)、f(0)、f(1)、f(2)、f(3)的值,再看相邻两个函数值之间的符号关系,进而确定函数零点.解:令f(x)=2x3-4x2-3x+1,则f(-1)=-2<0,f(0)=1>0,f(1)=-4<0,f(2)=-5<0,f(3)=10>0,所以f(-1)·f(0)<0,f(0)·f(1)<0,f(2)·f(3)<0.又因为三次方程最多有三个根,所以方程2x3-4x2-3x+1=0在区间(-1,0),(0,1),(2,3)内各有一个根.故选C.点评:本题涉及的函数在各个区间上的单调性不易判断,因此可以将方程的根可能存在的区间一一验证,从而确定根所在的大致区间.