已知:二次函数y=ax2-4ax+b图象,开口向上,且b<0,与x轴的两个交点分别为A、B,且满足,(O为坐标原点),与y轴的交点为C(0,t),顶点的纵坐标为k,且满足.
(1)求A、B两点的坐标.
(2)求t的取值范围.
(3)当t取最小值时,求出这个二次函数式.
网友回答
解:(1)二次函数y=ax2-4ax+b的对称轴为x=-=2,
∵=5①,
∴点A在对称轴右边,点B在对称轴左边,
∴|OA|-2=|OB|+2②,
联立①②解得,|OA|=5,|OB|=1,
又∵5-2=3,
∴点A、B到对称轴x=2的距离为3,
所以,A、B两点的坐标分别为A(5,0),B(-1,0);
(2)由|k-|≤得,k-≤或k-≥-,
解得k≤或k≥-3,
所以,k的范围为-3≤k≤,
∵抛物线与y轴的交点为C(0,t),点A(-1,0)在抛物线上,
∴b=t,a+4a+b=0,
∴5a+t=0,
抛物线顶点纵坐标k==b-4a=t-4×(-t)=t,
∴-3≤t≤,
解得-≤t≤,
∵抛物线开口向上,
∴a>0,
∴t=-5a<0,
∴t的取值范围是-≤t<0;
(3)t取最小值时,t=-,
此时,b=t=-,
∵5a+t=0,
∴a=,
∴这个二次函数式为y=x2-x-.
解析分析:(1)先求出抛物线的对称轴为x=2,根据抛物线的对称性可得|OA|-2=|OB|+2,计算求出|OA|、|OB|的长度,即可得到点A、B的坐标;
(2)解不等式得到k的取值范围,再根据点A的坐标得到a、t的关系式,然后代入顶点纵坐标消掉字母a得到关于t的不等式,求解即可得到t的取值范围;
(3)根据t的取值范围得到t的最小值,再代入a、t的关系式求出a的值,代入二次函数表达式即可得解.
点评:本题是对二次函数的综合考查,主要利用了二次函数的对称轴解析式的求解,函数的对称性,顶点坐标的求解,以及解绝对值不等式,(2)题需要注意t二次函数与y轴的交点在y轴的负半轴,t与b的值相等,都是负数.