阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x-0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推

发布时间:2020-08-11 07:43:53

阅读下列材料:
我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x-0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;

这个结论可以推广为|x1-x2|表示在数轴上数x1,x2对应点之间的距离;
在解题中,我们会常常运用绝对值的几何意义:
例1:解方程|x|=2.容易得出,在数轴上与原点距离为2的点对应的数为±2,即该方程的x=±2;
例2:解不等式|x-1|>2.如图,在数轴上找出|x-1|=2的解,即到1的距离为2的点对应的数为-1,3,则|x-1|>2的解为x<-1或x>3;
例3:解方程|x-1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x的值.在数轴上,1和-2的距离为3,满足方程的x对应点在1的右边或-2的左边.若x对应点在1的右边,如图可以看出x=2;同理,若x对应点在-2的左边,可得x=-3.故原方程的解是x=2或x=-3.
参考阅读材料,解答下列问题:
(1)方程|x+3|=4的解为______;
(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|-|x+4|≤a对任意的x都成立,求a的取值范围.

网友回答

解:(1)根据绝对值得意义,方程|x+3|=4表示求在数轴上与-3的距离为4的点对应的x的值为1或-7.

(2)∵3和-4的距离为7,
因此,满足不等式的解对应的点3与-4的两侧.
当x在3的右边时,如图,

易知x≥4.
当x在-4的左边时,如图,

易知x≤-5.
∴原不等式的解为x≥4或x≤-5

(3)原问题转化为:a大于或等于|x-3|-|x+4|最大值.
当x≥3时,|x-3|-|x+4|应该恒等于-7,
当-4<x<3,|x-3|-|x+4|=-2x-1随x的增大而减小,
当x≤-4时,|x-3|-|x+4|=7,
即|x-3|-|x+4|的最大值为7.
故a≥7.
解析分析:仔细阅读材料,根据绝对值的意义,画出图形,来解答.

点评:本题是一道材料分析题,通过阅读材料,同学们应当深刻理解绝对值得几何意义,结合数轴,通过数形结合对材料进行分析来解答题目.由于信息量较大,同学们不要产生畏惧心理.
以上问题属网友观点,不代表本站立场,仅供参考!