如图,两个半径相等的圆轮紧靠在墙边,已知两圆轮的半径为5,则它们与墙的切点A与B之间的距离是________.
网友回答
10
解析分析:先连接O1O2,O2A,O1B,由于AB是公切线,易知∠O2AB=∠O1BA=90°,于是O1B∥O2A,而O1B=O2A,易证四边形O1O2AB是矩形,从而易求AB.
解答:解:如右图所示,连接O1O2,O2A,O1B,
∵AB是公切线,
∴∠O2AB=∠O1BA=90°,
∴O1B∥O2A,
又∵O1B=O2A,
∴四边形O1O2AB是矩形,
∴AB=O1O2=5+5=10.
故