如图,以O为圆心的两个同心圆,外圆的弦AB与内圆相切于点E,过点E的直径与外圆交于C,D两点,若CE=8,ED=2,求AB的长.

发布时间:2020-08-07 11:43:28

如图,以O为圆心的两个同心圆,外圆的弦AB与内圆相切于点E,过点E的直径与外圆交于C,D两点,若CE=8,ED=2,求AB的长.

网友回答

解:连接OA,则圆的半径OA=CD=(CE+ED)=(8+2)=5,
则OE=5-2=3,
在直角△OAE中,AE===4,
∴AB=2AE=8.
解析分析:连接OA,首先求得半径的长,则OE即可求解,然后在直角△OAE中,利用勾股定理即可求得AE的长,则AB即可求解.

点评:本题考查了切线的性质以及垂径定理,正确求得AE的长是关键.
以上问题属网友观点,不代表本站立场,仅供参考!