锐角三角形ABC的三边长BC=a,CA=b,AB=c.a、b、c均为整数,且满足如下条件:a、b的最大公约数为2,a+b+c=,则△ABC的周长为________.
网友回答
6或35
解析分析:由题目可知,c=-(a+b)=,由于三角形中,有a+b>c,则-(a+b)=<a+b,整理得:3ab<(a+b)2<6ab,由于ab≤()2,所以(a+b)2≥4ab,假设(a+b)2=4ab,则a=b,由于a,b的最大公约数为2,所以a=b=2,代入a+b+c=,得c=2,符合题意.当△ABC为非等边三角形,三边为10,14,11,从而求出△ABC的周长.
解答:三角形中,有a+b>c,
则-(a+b)=<a+b,
整理得:3ab<(a+b)2<6ab,
由于ab≤()2,
所以(a+b)2≥4ab,
假设(a+b)2=4ab,则a=b,
由于a,b的最大公约数为2,
所以a=b=2,
代入a+b+c=,得c=2,符合题意.
则△ABC的周长=2+2+2=6.
当△ABC为非等边三角形,三边为10,14,11,满足a+b+c=,则△ABC的周长=10+14+11=35.
故