正方形A1B1C1O,A2B2C2C1,A3B3C3C2,按如图所示的方式放置,点A1,A2,A3,…在直线y=kx+b(k>0),点C1,C2,C3,…在x轴上,已

发布时间:2020-08-10 16:08:56

正方形A1B1C1O,A2B2C2C1,A3B3C3C2,按如图所示的方式放置,点A1,A2,A3,…在直线y=kx+b(k>0),点C1,C2,C3,…在x轴上,已知点B1(1,1),B2(3,2),则B5的坐标是________.

网友回答

(25-1,24)或写成(31,16)
解析分析:由图和条件可知A1(0,1)A2(1,2)A3(3,4),由此可以求出直线为y=x+1,Bn的横坐标为An+1的横坐标,纵坐标为An的纵坐标
又An的横坐标数列为An=2n-1-1,所以纵坐标为(2n-1),然后就可以求出Bn的坐标为[A(n+1)的横坐标,An的纵坐标,最后根据规律就可以求出B5的坐标.

解答:∵点B1(1,1),B2(3,2),
∴A1(0,1)A2(1,2)A3(3,4),
∴直线y=kx+b(k>0)为y=x+1,
∴Bn的横坐标为An+1的横坐标,纵坐标为An的纵坐标
又An的横坐标数列为An=2n-1-1,所以纵坐标为2n-1,
∴Bn的坐标为[A(n+1)的横坐标,An的纵坐标]=(2n-1,2n-1).
所以B5的坐标是(25-1,24),即(31,16).
故填空
以上问题属网友观点,不代表本站立场,仅供参考!