已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.
求证:AB=CD.
网友回答
证明:延长DE到F,使EF=DE,连接BF,
∵E是BC的中点,
∴BE=CE,
∵在△BEF和△CED中
,
∴△BEF≌△CED.
∴∠F=∠CDE,BF=CD.
∵∠BAE=∠CDE,
∴∠BAE=∠F.
∴AB=BF,
又∵BF=CD,
∴AB=CD.
解析分析:此题要证明AB=CD,不能通过证明△ABE和△CED全等得到,因为根据已知条件无法证明它们全等;那么可以利用等腰三角形的性质来解题,为此必须把AB和CD通过作辅助线转化到一个等腰三角形中,而延长DE到F,使EF=DE,连接BF就可以达到要求,然后利用全等三角形的判定与性质就可以证明题目的问题.
点评:本题考查了全等三角形的判定和性质;一般证明线段相等大多数是通过全等三角形解决问题,有时没有全等三角形时,可以利用等腰三角形的性质解决问题.