如图,在△ABC中,AD⊥BC,∠CAD=∠B.
(1)利用尺规作图,作△ADB的外接圆⊙O;(保留作图痕迹,不写作法)
(2)判断AC与⊙O的位置关系并证明;
(3)若AC=10,AD=8,求⊙O的直径.
网友回答
解:(1)如右图所示,
(2)AC是⊙O的切线,
∵AD⊥BC,
∴∠ADB=90°,
∴∠B+∠BAD=90°,
又∵∠CAD=∠B,
∴∠CAD+∠BAD=90°,
即∠BAC=90°,
∴AC是⊙O的切线;
(3)∵∠CAD=∠B,∠ADC=∠BDA=90°,
∴△ACD∽△BAD,
在Rt△ACD中,CD=6,
∴AD:AB=CD:AC,
∴AB=.
解析分析:(1)先根据基本作图,作出线段AB的垂直平分线,交点就是圆心,再以AB的一半为半径画圆即可;
(2)AC是⊙O的切线,由于AD⊥BC,那么∠ADB=90°,即∠B+∠BAD=90°,而∠CAD=∠B,等量代换即可得∠CAD+∠BAD=90°,即∠BAC=90°,从而可证AC是⊙O的切线;
(3)由于∠CAD=∠B,∠ADC=∠BDA=90°,易证△ACD∽△BAD,在Rt△ACD中利用勾股定理可求CD,再利用比例线段可求AB.
点评:本题考查了切线的判定、勾股定理、基本作图.解题的关键是找出AB的中点,以及证明∠BAC=90°、△ACD∽△BAD.