计算:3(2²+1)(2^4+1)(2^8+1)(2^16+1)

发布时间:2021-03-16 11:48:27

计算:3(2²+1)(2^4+1)(2^8+1)(2^16+1)

网友回答

3(2²+1)(2^4+1)(2^8+1)(2^16+1)
=(2^2-1)(2²+1)(2^4+1)(2^8+1)(2^16+1)
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)
=(2^8-1)(2^8+1)(2^16+1)
=(2^16-1)(2^16+1)
=2^32-1
======以下答案可供参考======
供参考答案1:
提示你 将3写成2的平方-1
然后连续平方差公式
我想你那么聪明 应该会了
供参考答案2:
(2ˆ2-1)(2ˆ2+1)(2ˆ4+1)(2ˆ8+1)(2ˆ16+1)
=(2ˆ4-1)(2ˆ4+1)(2ˆ8+1)(2ˆ16+1)
=(2ˆ8-1)(2ˆ8+1)(2ˆ16+1)
(2ˆ16-1)(2ˆ16+1)
=2ˆ32-1
可追问啊供参考答案3:
3(2^2+1)(2^4+1)(2^8+1)(2^16+1
=3(2²-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)/(2²-1)
=3(2^4-1)(2^4+1)(2^8+1)(2^16+1)/(2²-1)
=3(2^8-1)(2^8+1)(2^16+1)/(2²-1)
=3(2^16-1)(2^16+1)/(2²-1)
=3(2^64-1)/3
=2^64-1
以上问题属网友观点,不代表本站立场,仅供参考!