以长为2的线段为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上,如图所示.(1)求AM、

发布时间:2020-08-07 07:46:37

以长为2的线段为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上,如图所示.
(1)求AM、DM的长;
(2)求证:AM2=AD?DM.

网友回答

(1)解:在Rt△APD中,PA=AB=1,AD=2,
∴PD==,
∴AM=AF=PF-PA=PD-PA=-1,
DM=AD-AM=2-(-1)=3-;

(2)证明:∵AM2=(-1)2=6-2,AD?DM=2(3-)=6-2,
∴AM2=AD?DM.
解析分析:(1)由勾股定理求PD,根据AM=AF=PF-PA=PD-PA,DM=AD-AM求解;
(2)由(1)计算的数据进行证明.

点评:本题考查了正方形的性质及勾股定理的运用.关键是由勾股定理,正方形的边长相等,表示相关线段的长度.
以上问题属网友观点,不代表本站立场,仅供参考!