如图,矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,EC=2cm,AD上有一点P,PA=6cm,过点P作PF⊥AD交BC于点F,将纸片折叠,使P与E重合,折痕交PF于Q,则线段PQ的长是________cm.
网友回答
解析分析:连接EQ,由翻折变换的性质可知△PEQ是等腰三角形,OQ是PE的垂直平分线,再由已知条件得出PD及DE的长,由勾股定理得出PE的长,设PQ=x,则QF=5-x,用x表示出OQ的长,根据S△PEQ+S梯形QFCE=S梯形PFCE即可得出x的值,进而得出结论.
解答:解:连接EQ,
∵将纸片折叠,使P与E重合,
∴△PEQ是等腰三角形,OQ是PE的垂直平分线,
∵矩形纸片ABCD中,AB=5cm,BC=10cm,PA=6cm,CE=2cm,
∴PD=4cm,DE=3cm,
∵在Rt△DPE中PE===5.
∴OP=PE=,
设PQ=x,则QF=5-x,
∴OQ==
∵S△PEQ+S梯形QFCE=S梯形PFCE,即:PE?OQ+(QF+CE)×CF=(PF+CE)×CF,
即×5×+×(5-x+2)×4=×(5+2)×4,
解得x=cm.
故