如图在△ABC中,D是∠ACB与∠ABC的角平分线的交点,BD的延长线交AC于E,且∠EDC=50°,求∠A的度数.

发布时间:2020-08-07 09:45:42

如图在△ABC中,D是∠ACB与∠ABC的角平分线的交点,BD的延长线交AC于E,且∠EDC=50°,求∠A的度数.

网友回答

解:∵∠EDC=50°,
∴∠BDC=180°-50°=130°,
∴∠DBC+∠DCB=180°-130°=50°,
又D是∠ACB与∠ABC的角平分线的交点,
∴∠ABC+∠ACB=50°×2=100°,
∴∠A=80°.
解析分析:首先根据邻补角的概念求得:∠BDC=180°-50°=130°,再根据三角形的内角和定理以及角平分线的性质,即可分析得到:∠BDC=90°+∠A,从而求出∠A.

点评:特别注意此题中,可得:∠BDC=90°+∠A.
以上问题属网友观点,不代表本站立场,仅供参考!