如图,已知AB为⊙O的直径,直线BC与⊙O相切于点B,过A作AD∥OC交⊙O于点D,连接CD.(1)求证:CD是⊙O的切线;(2)若AD=2,直径AB=6,求线段BC

发布时间:2020-08-06 13:22:41

如图,已知AB为⊙O的直径,直线BC与⊙O相切于点B,过A作AD∥OC交⊙O于点D,连接CD.
(1)求证:CD是⊙O的切线;
(2)若AD=2,直径AB=6,求线段BC的长.

网友回答

(1)证明:连接OD,如图所示:

∵OA=OD,
∴∠ODA=∠OAD.
∵AD∥CO,
∴∠COD=∠ODA,∠COB=∠OAD.
∴∠COD=∠COB.
∵OD=OB,OC=OC,
∴△ODC≌△OBC.
∴∠ODC=∠OBC.
∵CB是圆O的切线且OB为半径,
∴∠CBO=90°.
∴∠CDO=90°.
∴OD⊥CD.
又∵CD经过半径OD的外端点D,
∴CD为圆O的切线.

(2)解:连接BD,CO,
∵AB是直径,
∴∠ADB=90°.
在直角△ADB中,BD=,
∵∠ADB=∠OBC=90°,且∠COB=∠BAD,
∴△ADB∽△OBC.
∴,即.
∴BC=6.
解析分析:(1)连接OD,要证明CD为圆O的切线,只要证明∠CDB=90°即可;
(2)连接BD,根据已知求得△ADB∽△OBC再根据相似比即可求得BC的值.

点评:本题利用了等边对等角,平行线的性质,全等三角形的判定和性质,切线的判定和性质,直径对的圆周角是直角,勾股定理,相似三角形的判定和性质求解.
以上问题属网友观点,不代表本站立场,仅供参考!