如图,AB是⊙O的弦,CO⊥OA,OC交AB于点P,且PC=BC,BC是⊙O的切线吗?证明你的结论.

发布时间:2020-08-05 21:06:42

如图,AB是⊙O的弦,CO⊥OA,OC交AB于点P,且PC=BC,BC是⊙O的切线吗?证明你的结论.

网友回答

解:BC是⊙O的切线.
证明:∵PC=BC,
∴∠CPB=∠CBP.
又∵∠CPB=∠APO,
∴∠APO=∠CBP.
又∵BO=AO,
∴∠OAB=∠OBA,
∴∠APO+∠OAB=∠CBP+∠OBA.
又∵OA⊥CO,
∴∠APO+∠OAB=90°,
∴∠CBP+∠OBA=90°,
∴OB⊥BC.
又∵CB过半径OB外端,
∴CB是⊙O切线.

解析分析:要证明BC是否是⊙O的切线,只要证明∠OBC的度数.若该角为直角,则BC是⊙O的切线,否则不是.

点评:本题考查的是切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.
以上问题属网友观点,不代表本站立场,仅供参考!