已知:在△ABC中,∠ABC=90°,点E在直线AB上,ED与直线AC垂直,垂足为D,且点M为EC中点,连接BM,DM.(1)如图1,若点E在线段AB上,探究线段BM

发布时间:2020-08-12 06:17:50

已知:在△ABC中,∠ABC=90°,点E在直线AB上,ED与直线AC垂直,垂足为D,且点M为EC中点,连接BM,DM.

(1)如图1,若点E在线段AB上,探究线段BM与DM及∠BMD与∠BCD所满足的数量关系,并直接写出你得到的结论;
(2)如图2,若点E在BA延长线上,你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明;
(3)若点E在AB延长线上,请你根据条件画出相应的图形,并直接写出线段BM与DM及∠BMD与∠BCD所满足的数量关系.

网友回答

解:(1)结论:BM=DM,∠BMD=2∠BCD.
理由:∵BM、DM分别是Rt△DEC、Rt△EBC的斜边上的中线,
∴BM=DM=CE;
又∵BM=MC,∴∠MCB=∠MBC,即∠BME=2∠BCM;
同理可得∠DME=2∠DCM;
∴∠BME+∠DME=2(∠BCM+∠DCM),即∠BMD=2∠BCD.

(2)在(1)中得到的结论仍然成立.即BM=DM,∠BMD=2∠BCD
证法一:∵点M是Rt△BEC的斜边EC的中点,
∴BM=EC=MC,
又点M是Rt△BEC的斜边EC的中点,
∴DM=EC=MC,
∴BM=DM;
∵BM=MC,DM=MC,
∴∠CBM=∠BCM,∠DCM=∠CDM,
∴∠BMD=∠EMB+∠EMD=2∠BCM+2∠DCM
=2(∠BCM+∠DCM)=2∠BCD,
即∠BMD=2∠BCD.
证法二:∵点M是Rt△BEC的斜边EC的中点,
∴BM=EC=ME;
又点M是Rt△DEC的斜边EC的中点,
∴DM=EC=MC,
∴BM=DM;
∵BM=ME,DM=MC,
∴∠BEC=∠EBM,∠MCD=∠MDC,
∴∠BEM+∠MCD=∠BAC=90°-∠BCD,
∴∠BMD=180°-(∠BMC+∠DME),
=180°-2(∠BEM+∠MCD)=180°-2(90°-∠BCD)=2∠BCD,
即∠BMD=2∠BCD.

(3)所画图形如图所示:

图1中有BM=DM,∠BMD=2∠BCD;
图2中∠BCD不存在,有BM=DM;
图3中有BM=DM,∠BMD=360°-2∠BCD.
解法同(2).
解析分析:(1)由于BM、DM分别是Rt△DEC、Rt△EBC的斜边上的中线,即可证得BM=DM=CE;易知BM=MC=DM,结合三角形的外角性质可知∠EMB=2∠MCB,∠DME=2∠DCM,两式相加即可得到∠BMD=2∠BCD.
(2)同(1)易证得DM=BM;由于BM=MC=DM=EM,结合三角形的外角性质可得:∠BME=2∠BCM,∠DME=2∠MCD,两式相减即可得到∠BMD=2∠BCD.
(3)此题应分三种情况:
①D点在线段AC上时,易证得BM=MD,同(2)可证得∠BMD=2∠BCD;
②D、C重合,此时BM=MD,而∠BCD不存在;
③D点在AC的延长线上,同(2)可得到∠BMD=∠BME+∠EMD=2∠BCD,所以钝角∠BMD=360°-2∠BCD.

点评:此题主要考查了直角三角形的性质以及三角形的外角性质,要注意(3)题中,点D的位置有三种,不要遗漏任何一种情况.
以上问题属网友观点,不代表本站立场,仅供参考!