如图,△ABC与△ADE有公共的顶点A,AB=k?AC,AD=k?AE,且∠BAC=∠DAE.点G、P、H分别为DE、BE、BC的中点.
(1)如图1,当k=1时,猜想线段PG与PH的数量关系,并说明理由;
(2)如图2,当k≠1时,猜想线段PG与PH的数量关系,并说明理由.
网友回答
解:(1)PD=PH.连接BD、CE,
∵∠BAC=∠DAE,∴∠BAD=∠E,
∵AC=AB,AD=AE,
∴△ABD≌△ACE(SAS),
∴BD=CE;
∵点G、P、H分别为DE、BE、BC的中点,
∴根据中位线定理可得PG=BD,PH=EC,
∴PG=PH.
(2)PD=k?PH.连接BD、CE,
∵∠BAC=∠DAE,∴∠BAD=∠CAE,
∵AB=k?AC,AD=k?AE,
∴△ABD∽△ACE,
∴BD=k?CE,
∵点G、P、H分别为DE、BE、BC的中点,
∴根据中位线定理可得PG=BD,PH=EC,
∴即得PG=k?PH.
解析分析:(1)连接BD、CE,首先证明△ABD≌△ACE(SAS),得BD=CE,根据中位线定理可得PD=BD,PH=EC,即得PD=PH.
(2)连接BD、CE,首先证明△ABD∽△ACE,得BD=k?CE,根据中位线定理可得PD=BD,PH=EC,即得PD=k?PH.
点评:本题主要考查三角形全等及相似的判定和性质、中位线定理等知识点,考查学生对知识的综合运用能力.