已知:如图,D、E分别在AB、AC上,若AB=AC,AD=AE,∠A=60°,∠B=35°,则∠BDC的度数是A.80°B.85°C.90°D.95°

发布时间:2020-08-09 22:11:03

已知:如图,D、E分别在AB、AC上,若AB=AC,AD=AE,∠A=60°,∠B=35°,则∠BDC的度数是A.80°B.85°C.90°D.95°

网友回答

D
解析分析:根据SAS证△ABE≌△ACD,推出∠C=∠B,求出∠C的度数,根据三角形的外角性质得出∠BDC=∠A+∠C,代入求出即可.

解答:∵在△ABE和△ACD中

∴△ABE≌△ACD(SAS),
∴∠C=∠B,
∵∠B=35°,
∴∠C=35°,
∵∠A=60°,
∴∠BDC=∠A+∠C=95°,
故选D.

点评:本题考查了全等三角形的性质和判定和三角形的外角性质的应用,解此题的关键是求出∠C的度数和得出∠BDC=∠A+∠C.
以上问题属网友观点,不代表本站立场,仅供参考!