如图,二次函数(m<4)的图象与x轴相交于点A、B两点.
(1)求A、B两点的坐标(可用含字母m的代数式表示);
(2)如果这个二次函数的图象与反比例函数(x>0)的图象相交于点C,且∠BAC的正弦值为?,求这个二次函数的解析式.
网友回答
解:(1)解方程,得x1=-4,x2=-m.
∵m<4,∴A(-4,0),B(-m,0).
(2)过点C作CD⊥x轴,垂足为D.
∵sin∠BAC==,
∴tan∠BAC==,
设CD=3k,则AD=4k.
∵OA=4,∴OD=4k-4,
∴C(4k-4,3k).
∵点C在反比例函数)的图象上,∴=3k,
解得,k1=-(不合题意,舍去),k2=.∴C(2,).
∵点C在二次函数的图象上,
∴×22+(+1)×2+m=,∴m=1.
∴二次函数的解析式为.
解析分析:(1)用求根公式求得A,B两点的坐标,
(2)过点C作CD⊥x轴,垂足为D.求得∠BAC的弦和正切值,设CD=3k,则AD=4k.又求得点C,由其反比例函数即求得二次函数解析式.
点评:本题考查了二次函数的综合运用,考查了用求根公式求得A,B两点的坐标;考查了直角三角内的三角函数,以及反比例函数的求解.