已知△ABC中,AB=10,AC=6,BC=8,若三条内角平分线交于点O,OG⊥AB于G,则AG的长度为________.

发布时间:2020-08-07 04:56:30

已知△ABC中,AB=10,AC=6,BC=8,若三条内角平分线交于点O,OG⊥AB于G,则AG的长度为________.

网友回答

4
解析分析:利用勾股定理逆定理判定△ABC是以∠C为直角的三角形,再根据角平分线上的点到角的两边的距离相等可得点O到三边的距离相等,然后利用△ABC的面积列式求出OG的长度,过点O作OE⊥AC,OF⊥BC,判定四边形CEOF是正方形,求出CE,再求出AE,然后根据对称性可得AG=AE,从而得解.

解答:解:∵62+82=100=102,
∴△ABC是直角三角形,∠C=90°,
∵三条内角平分线交于点O,OG⊥AB,
∴S△ABC=(AC+BC+AB)?OG=AC?BC,
∴(6+8+10)?OG=6×8,
解得OG=2,
过点O作OE⊥AC,OF⊥BC,
则四边形CEOF是正方形,
∴CE=OE=OG=2,
∴AG=AE=AC-CE=6-2=4.
以上问题属网友观点,不代表本站立场,仅供参考!