如图,△ABC是直角三角形,∠ABC=90°,以AB为直径的⊙O交AC于点E,点D是BC边的中点,连接DE.(1)试判断直线DE与⊙O的位置关系?并说明理由;(2)若

发布时间:2020-08-09 12:34:36

如图,△ABC是直角三角形,∠ABC=90°,以AB为直径的⊙O交AC于点E,点D是BC边的中点,连接DE.
(1)试判断直线DE与⊙O的位置关系?并说明理由;
(2)若⊙O的半径为,DE=3,求AE的长.

网友回答

解:(1)直线DE与⊙相切.理由如下:
连接OE,BE,
∵AB是直径.
∴BE⊥AC.
∵D是BC的中点,
∴DE=DB.
∴∠DBE=∠DEB.
又OE=OB,
∴∠OBE=∠OEB.
∴∠DBE+∠OBE=∠DEB+∠OEB.
即∠ABD=∠OED.
但∠ABC=90°,
∴∠OED=90°.
∴DE是⊙O的切线.

(2)∵∠ABC=90°,AB=2,BC=2DE=6,
∴AC=4.
∴BE=3.
∴AE=.
解析分析:(1)直线DE与⊙相切.根据切线的判定定理只需证明OE⊥DE即可;
(2)根据(1)中的证明过程,会发现BC=2DE,根据勾股定理求得AC的长,进一步求得直角三角形斜边上的高BE,最后根据勾股定理求得AE的长.

点评:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
以上问题属网友观点,不代表本站立场,仅供参考!