如图,在平面直角坐标系xOy中,A(2,0),B(0,2),⊙C的圆心为点C(-1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最大值是________.
网友回答
2+
解析分析:由题意可得当⊙C与AD相切时,△ABE面积最大,然后连接CD,由切线的性质,根据勾股定理,可求得AD的长,易证得△AOE∽△ADC,根据相似三角形的对应边成比例,易求得OE的长,继而求得△ABE面积的最大值.
解答:解:当⊙C与AD相切时,△ABE面积最大,
连接CD,
则∠CDA=90°,
∵A(2,0),B(0,2),⊙C的圆心为点C(-1,0),半径为1,
∴CD=1,AC=2+1=3,
∴AD==2,
∵∠AOE=∠ADC=90°,∠EAO=∠CAD,
∴△AOE∽△ADC,
∴,
即,
∴OE=,
∴BE=OB+OE=2+,
∴S△ABE=BE?OA=×(2+)×2=2+.
故