某校八年级学生小丽,小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小丽:如果

发布时间:2020-08-10 04:28:41

某校八年级学生小丽,小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.
小丽:如果以10元/千克的价格销售,那么每天可售出300千克.
小强:如果以13元/千克的价格销售,那么每天可获取利润750元.
小红:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.
(1)求y(千克)与x(元)(x>0)的函数关系式;
(2)当销售单价为何值时,该超市销售这种水果每天获得的利润达600元?[利润=销售量×(销售单价-进价)].
(3)一段时间后,发现这种水果每天的销售量均低于225千克,则此时该超市销售这种水果每天获取的利润最大是多少?

网友回答

解:(1)当销售单价为13元/千克时,销售量为:=150千克
设y与x的函数关系式为:y=kx+b(k≠0)
把(10,300),(13,150)分别代入得:,
解得,
故y与x的函数关系式为:y=-50x+800(x>0)

(2)∵利润=销售量×(销售单价-进价)
∴W=(-50x+800)(x-8)=600
0=-50(x-12)2+200
解得:x1=10,x2=14.
∴当销售单价为10或14元时,每天可获得的利润是600元.

(3)设每天水果的利润w元,
则W=(-50x+800)(x-8)
=-50x2+1200x-6400
=-50(x-12)2+800
又∵水果每天的销售量均低于225kg,水果的进价为8元/千克,
∴-50x+800≤225,
∴x≥11.5,
∴当x=11.5时,W最大=787.5(元).
答:此时该超市销售这种水果每天获取的利润最大是787.5元.
解析分析:(1)以10元/千克的价格销售,那么每天可售出300千克;以13元/千克的价格销售,那么每天可获取利润750元.就相当于直线过点(10,300),(13,150),然后列方程组解答即可.
(2)根据利润=销售量×(销售单价-进价)写出解析式,W=(-50x+800)(x-8)=600求出即可;
(3)由二次函数的性质以及利用配方法求最大值,自变量的取值范围解答这一问题.

点评:此题考查待定系数法求一次函数,一元二次方程,以及二次函数的性质与不等式,是一道综合性较强的题目.
以上问题属网友观点,不代表本站立场,仅供参考!