如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD于E,EF∥BC交AC于F,那么AE与CF相等吗?请验证你的结论.

发布时间:2020-08-05 16:14:33

如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD于E,EF∥BC交AC于F,那么AE与CF相等吗?请验证你的结论.

网友回答

解:AE=CF.
理由:过E作EG∥CF交BC于G,
∴∠3=∠C,
∵∠BAC=90°,AD⊥BC,
∴∠ABC+∠C=90°,∠ABD+∠BAD=90°,
∴∠C=∠BAD,
∴∠3=∠BAD,
又∵∠1=∠2,BE=BE,
∴△ABE≌△GBE(AAS),
∴AE=GE,
∵EF∥BC,EG∥CF,
∴四边形EGCF是平行四边形,
∴GE=CF,
∴AE=CF.
解析分析:过E作EG∥CF交BC于G,可得四边形EGCF是平行四边形,则GE=CF,需证AE=GE,可通过证明△ABE≌△GBE(AAS)证得.

点评:此题主要考查平行四边形的判定和性质以及全等三角形的判定.熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.
以上问题属网友观点,不代表本站立场,仅供参考!