如图,在直角坐标系xOy中有一梯形ABCO,顶点C在x正半轴上,A、B两点在第一象限;且AB∥CO,AO=BC=2,AB=3,OC=5.点P在x轴上,从点(-2,0)

发布时间:2020-08-08 08:04:26

如图,在直角坐标系xOy中有一梯形ABCO,顶点C在x正半轴上,A、B两点在第一象限;且AB∥CO,AO=BC=2,AB=3,OC=5.点P在x轴上,从点(-2,0)出发,以每秒1个单位长度的速度沿x轴向正方向运动;同时,过点P作直线l,使直线l和x轴向正方向夹角为30°.设点P运动了t秒,直线l扫过梯形ABCO的面积为S扫.
(1)求A、B两点的坐标;
(2)当t=2秒时,求S扫的值;
(3)求S扫与t的函数关系式,并求出直线l扫过梯形ABCO面积的时点P的坐标.

网友回答

解:(1)(1,),(4,).

(2).

(3)当0≤t<2时,△AEF∽△AOD,,
∴S扫=t2;
当2≤t<3时,S扫=S△AOD+S□DOPF=(t-2)
∴S扫=t-;
当3≤t≤7时,
S扫=4-S△CPM=4-2×
∴S扫=-t2+t-,
∵-t2+t-=×4,
∴t2-14t+41=0,
t1=7-2,t2=7+2>7(舍)
∴P的坐标为(5-2,0).
解析分析:(1)两底的差的一半就是A的横坐标;过A、B作x轴的垂线,在构建的直角三角形中根据OA的长及两底的差便可求出梯形的高即A点的纵坐标.得出A点坐标后向右平移3个单位就是B点的坐标.
(2)当t=2时,P、O两点重合,如果设直线l与AB的交点为D,那么AD=2,而AD边上的高就是A点的纵坐标,由此可求出△ADO的面积及直线l扫过的面积.
(3)本题要分三种情况进行讨论:
①当P在原点左侧,即当0≤t<2时,重合部分是个三角形,如果设直线l与AO,AB分别交于E,F,可根据△AEF∽△AOD,用相似比求出其面积.即可得出S,t的函数关系式.
②当P在O点右侧(包括和O重合),而F点在B点左侧时,即当2≤t<3时,扫过部分是个梯形,可根据梯形的面积计算方法即可得出直线l扫过部分的面积.也就能得出S,t的函数关系式.
③当P点在C点左侧(包括和C点重合),F点在B点右侧(包括和B点重合),即当3≤t≤7时,扫过部分是个五边形,可用梯形ABCO的面积减去△MPC的面积来得出S,t的函数关系式.

点评:本题考查了梯形的性质,相似三角形的判定和性质,二次函数的综合应用等知识点.主要考查了学生分类讨论和数形结合的数学思想方法.
以上问题属网友观点,不代表本站立场,仅供参考!