a,b,c是△ABC的三边长,且关于x的方程b(x2-1)-2ax+c(x2+1)=0有两个相等的实根,求证:这个三角形是直角三角形.

发布时间:2020-08-09 02:37:15

a,b,c是△ABC的三边长,且关于x的方程b(x2-1)-2ax+c(x2+1)=0有两个相等的实根,求证:这个三角形是直角三角形.

网友回答

证明:由原方程,得
(b+c)x2-2ax-b+c=0,
∵关于x的方程b(x2-1)-2ax+c(x2+1)=0有两个相等的实根,
∴△=4a2-4(b+c)(-b+c)=0,
即a2-c2+b2=0,
∴a2+b2=c2,
∴这个三角形是直角三角形.
解析分析:先将原方程化为一元二次方程的一般形式,然后根据根的判别式△=b2-4ac=0证明.

点评:此题主要考查了勾股定理的逆定理和根的判别式,需要熟记一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;
(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数.
以上问题属网友观点,不代表本站立场,仅供参考!