如图,所示线段AB与CD都是⊙O中的弦,其中=108°,AB=a,=36°,CD=b,则⊙O的半径________.
网友回答
a-b或
解析分析:在AB上取BM=OB,连接AO、BO、DO、MO,根据全等三角形及相似三角形的判定定理可得出△BOM≌△OCD,且△MAO∽△OAB,再由全等三角形的对应边相等,相似三角形的对应边成比例即可求解.
解答:解:在AB上取BM=OB,连接AO、BO、DO、MO,
∵=108°,=36°,
∴∠DOC=36°,∠AOB=108°,
∵OC=OD=OA=OB,
∴∠ABO=∠DOC=36°,
∴△BOM≌△OCD,且△MAO∽△OAB,
∵AM=OM=CD=b,OB=BM=a-b,或OA==.
故