如图,已知抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(-1,0),对称轴为直线x=-2.
(1)求抛物线与x轴的另一个交点B的坐标;
(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.已知以AB为一底边的梯形ABCD的面积为9.求此抛物线的解析式,并指出顶点E的坐标;
(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E向上运动.设点P运动的时间为t秒.
①当t为______秒时,△PAD的周长最小?当t为______秒时,△PAD是以AD为腰的等腰三角形?(结果保留根号)
②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
网友回答
解:(1)由抛物线的轴对称性及A(-1,0),可得B(-3,0).
(2)设抛物线的对称轴交CD于点M,交AB于点N,
由题意可知AB∥CD,由抛物线的轴对称性可得CD=2DM.
∵MN∥y轴,AB∥CD,
∴四边形ODMN是矩形.
∴DM=ON=2,
∴CD=2×2=4.
∵A(-1,0),B(-3,0),
∴AB=2,
∵梯形ABCD的面积=(AB+CD)?OD=9,
∴OD=3,即c=3.
∴把A(-1,0),B(-3,0)代入y=ax2+bx+3得,
解得.
∴y=x2+4x+3.
将y=x2+4x+3化为顶点式为y=(x+2)2-1,得E(-2,-1).
(3)①当t为2秒时,△PAD的周长最小;当t为4或4-或4+秒时,△PAD是以AD为腰的等腰三角形.
故