(教材变式题)如图,已知B,E分别是线段AC,DF上的点,AF交BD于G,交EC于H,∠1=∠2,∠D=∠C,求证:DF∥AC.

发布时间:2020-08-10 06:58:02

(教材变式题)如图,已知B,E分别是线段AC,DF上的点,AF交BD于G,交EC于H,∠1=∠2,∠D=∠C,求证:DF∥AC.

网友回答

证明:∵∠1=∠2,∠1=∠3(对顶角相等),
∴∠2=∠3,
∴BD∥EC,
∴∠DBC+∠C=180°(两直线平行,同旁内角互补);
又∵∠D=∠C,
∵∠DBC+∠D=180°,
∴DF∥AC(同旁内角互补,两直线平行).
解析分析:证DF∥AC,可用直线DB作为第三线求解,那么“三线八角”中,与已知∠C、∠D相关的角为∠DBC.由∠1=∠2=∠3,易证得DB∥CE,则∠DBC+∠C=180°,通过等量代换,可求出∠D+∠DBC=180°,即可证得DF∥AC.

点评:本题考查了平行线的判定,“三线八角”是判定两条直线平行时所涉及的基本元素,其关键是确定“第三条直线”,这条直线一旦确定,“八角”随之而定.剩下的问题才是根据题设条件选择运用哪一个判定定理.
以上问题属网友观点,不代表本站立场,仅供参考!