已知△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D为BC边上一点.(1)求证:△ACE≌△ABD;(2)若AC=2,CD=1,求ED的长.

发布时间:2020-08-09 00:39:36

已知△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D为BC边上一点.
(1)求证:△ACE≌△ABD;
(2)若AC=2,CD=1,求ED的长.

网友回答

(1)证明:
∵△ABC是等腰直角三角形
∴AB=AC,∠BAC=90°
同理AB=AE,∠CAE=90°
∵∠BAC=∠CAE=90°
∴∠EAC+∠CAD=∠BAD+∠CAD=90°
∴∠EAC=∠DAB
在△ACE与△ABD中,

∴△ACE≌△ABD(SAS)
(2)解:在△ABC中
BC=
∴BD=BC-CD=4-1=3
∵△ABC是等腰直角三角形
∴∠ACB=∠B=45°
∵△ACE≌△ABD
∴∠ACE=∠B=45°,EC=DB=3
∵∠ECD=∠ACE+∠ACB=90°
∴△ECD是直角三角形
∴ED==.
解析分析:(1)利用△ABC和△ADE均为等腰直角三角形,得到两条对应边相等,然后得到其夹角相等即可证得两三角形全等;
(2)解:在△ABC中求得BC=2、BD=BC-CD=4-1=3,再根据△ACE≌△ABD得到∠ACE=∠B=45°,最后得到∠ECD=∠ACE+∠ACB=90°,利用勾股定理求得ED长即可

点评:本题考查了全等三角形的判定与性质及勾股定理等知识,全等三角形是一种非常重要的工具,应该利用好.
以上问题属网友观点,不代表本站立场,仅供参考!