直角梯形ABCD中,∠A=∠B=90°,AB=7,AD=2,BC=3,在AB上取一点P,使△APD与△BPC相似,求AP的长.

发布时间:2020-08-08 16:02:53

直角梯形ABCD中,∠A=∠B=90°,AB=7,AD=2,BC=3,在AB上取一点P,使△APD与△BPC相似,求AP的长.

网友回答

解:可设PA的长为x,
当△APD∽△BCP时,则=,即=,解得x=1或x=6.
假设△APD∽△BPC,则=,即=,
解得x=;
综上所述,AP的长度为1、6或.
解析分析:要使两个三角形相似,则可能是△APD∽△BPC,也可能是△APD∽△BCP,所以应分两种情况讨论,进而求解AP的值即可.

点评:本题主要考查了相似三角形的判定及性质问题,能够利用其性质求解一些简单的计算问题.
以上问题属网友观点,不代表本站立场,仅供参考!