用反证法证明:等腰三角形的底角是锐角.
网友回答
证明:用反证法.
假设等腰三角形的底角不是锐角,则大于或等于90°.
根据等腰三角形的两个底角相等,则两个底角的和大于或等于180°.
则该三角形的三个内角的和一定大于180°,这与三角形的内角和定理相矛盾,故假设不成立.
所以等腰三角形的底角是锐角.
解析分析:根据反证法的步骤进行证明.
点评:反证法的步骤是:
(1)假设结论不成立;
(2)从假设出发推出矛盾;
(3)假设不成立,则结论成立.
在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.