如图,一根木棒AB长为2a,斜靠在与地面OM垂直的墙壁ON上,与地面的倾斜角∠ABO=60°,若木棒沿直线NO下滑,且B端沿直线OM向右滑行,则木棒中点P也随之运动,已知A端下滑到A′时,AA′=a,求木棒中点P随之运动到P′所经过的路线长.
网友回答
解:连接OP、OP′,如图,
∵ON⊥OM,P为AB中点,
∴OP=AB=A′B′=OP′,
∵AB=2a
∴OP=a,
当A端下滑B端右滑时,AB的中点P到O的距离始终为定长a,
∴P是随之运动所经过的路线是一段圆弧,
∵∠ABO=60°,
∴∠AOP=30°,OA=a,
∵AA′=(-)a,OA′=OA-AA′=a,
∴sin∠A′B′O==,
∴∠A′B′O=45°,
∴∠A′OP=45°
∴∠POP′=∠A′OP′-∠AOP=15°,
∴弧PP′的长==πa,
即P点运动到P′所经过路线PP′的长为πa.
解析分析:根据直角三角形斜边上的中线等于斜边的一半得到OP=AB=A′B′=OP′,即P是随之运动所经过的路线是一段圆弧;在Rt△AOB中,根据含30度的直角三角形三边的关系得到∠AOP=30°,OA=a,则易求出OA′=OA-AA′=a,即可得到△A′OB′为等腰直角三角形,得到∠A′B′O=45°,则∠POP′=∠A′OP′-∠AOP=15°,然后根据弧长公式计算即可.
点评:本题考查了弧长公式:l=(n为弧所对的圆心角的度数,R为半径).也考查了直角三角形斜边上的中线等于斜边的一半以及含30度的直角三角形三边的关系和等腰直角三角形的性质.