如图,PA、PB是半径为1的⊙O的两条切线,点A、B分别为切点,∠APB=60°,OP与弦AB交于点C,与⊙O交于点D.阴影部分的面积是________(结果保留π).
网友回答
解析分析:由PA、PB是半径为1的⊙O的两条切线,得到OA⊥PA,OB⊥PB,OP平分∠APB,而∠APB=60°,得∠APO=30°,∠POA=90°-30°=60°,而OP垂直平分AB,得到S△AOC=S△BOC,从而得到S阴影部分=S扇形OAD,然后根据扇形的面积公式计算即可.
解答:∵PA、PB是半径为1的⊙O的两条切线,
∴OA⊥PA,OB⊥PB,OP平分∠APB,
而∠APB=60°,
∴∠APO=30°,∠POA=90°-30°=60°,
又∵OP垂直平分AB,
∴△AOC≌△BOC,
∴S△AOC=S△BOC,
∴S阴影部分=S扇形OAD==.
故