如图,已知直角三角形ABC的周长为,斜边上的中线CD=1,则△ABC的面积为A.B.C.D.1
网友回答
B
解析分析:根据直角三角形斜边上的中线等于斜边的一半求出AB,然后根据三角形的周长求出AC+BC,再平方并利用勾股定理求出AC?BC,然后根据三角形的面积公式列式进行计算即可得解.
解答:∵斜边上的中线CD=1,
∴AB=2CD=2×1=2,
∵△ABC的周长为2+,
∴AC+BC=2+-2=,
∴(AC+BC)2=AC2+2AC?BC+BC2=5,
根据勾股定理,AC2+BC2=AB2=4,
∴AC?BC=,
∴△ABC的面积=AC?BC=×=.
故选B.
点评:本题主要考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,利用完全平方公式以及勾股定理求出AC?BC=是解题的关键.