如图,点M、N分别在正方形ABCD的边BC、CD上,已知△MCN的周长等于正方形ABCD周长的一半,则∠MAN=________.
网友回答
45°
解析分析:把△ADN绕着点A按顺时针方向旋转90°后,得到△ABE,根据旋转的性质得到AE=AN,BE=DN,∠ABE=∠D=90°,∠NAE=90°,由∠ABC=90°得到点M、B、E共线,则ME=BE+BM=DN+BM,再利用△MCN的周长等于正方形ABCD周长的一半可得到MN=DN+BM,然后根据“SSS”可证明△MAN≌△MAE,则∠NAM=∠EAM,于是可计算出∠MAN=∠NAE=45°.
解答:把△ADN绕着点A按顺时针方向旋转90°后,得到△ABE,
∴AE=AN,BE=DN,∠ABE=∠D=90°,∠NAE=90°,
而∠ABC=90°,
∴点M、B、E共线,
∴ME=BE+BM=DN+BM,
∵△MCN的周长等于正方形ABCD周长的一半,
∴MN+NC+MC=DC+BC=DN+NC+MC+BM,
∴MN=DN+BM,
∴MN=ME,
∵在△MAN和△MAE中,
,
∴△MAN≌△MAE(SSS),
∴∠NAM=∠EAM,
∴∠MAN=∠NAE=45°.
故