如图,已知:PA切⊙O于A,割线PBC交⊙O于B,C,PD⊥AB于D,延长PD交AO的延长线于E,连接CE并延长,交⊙O于F,连接AF.
(1)求证:PD?PE=PB?PC;
(2)求证:PE∥AF;
(3)连接AC,若AE:AC=1:,AB=2,求EF的长.
网友回答
(1)证明:∵PA切⊙O于点A,∴AO⊥PA.∵PD⊥AB,∴=cos∠APE=.
∴PA2=PD×PE…①∵PBC是⊙O的割线,PA为⊙O切线,∴PA2=PB×PC…②联立①②,得PD?PE=PB?PC;
(2)证明:∵PD?PE=PB?PC(已证),∴,
∵∠BPD为公共角,∴△BDP∽△EPC,∴∠PBD=∠PEC,∵四边形ABCF内接圆,∴∠ABP=∠AFC,∴∠AFC=∠PEC,∴PE∥AP;
(3)解:∵AP是⊙O的切线,∴∠PAB=∠PCA,∵∠APB=∠CPA,∴△PAB∽△PCA,∴=…①,∵∠PAE=∠ADP=90°,∴∠APD+∠PAD=90°,∠APD+∠AEP=90°,∴∠PAB=∠AEP=∠FAE,∵∠ABP=∠F,∴△AEF∽△APB,∴=,即=…②联立①②,有=,∴EF=AE×=×2=.
解析分析:(1)欲证PD?PE=PB?PC,在此题所给的已知条件中,∠APE的余弦值在△APD和△APE中,有两种表示方法,从而得出一个等积式,根据切割线定理,再得到一个等积式,从而借助于PA2得到PD?PE=PB?PC;
(2)可证△PBD∽△PEC,再根据相似三角形的性质和圆内接四边形的性质得到∠PEC=∠AFC,根据平行线的判定即可得出结论;
(3)分别证明△PAB∽△PCA,△AEF∽△APB,得出两个比例式,联立有=,再代值即可求出EF的长.
点评:此题考查了三角函数、切割线定理,以及相似的判定和性质,比较全面,有一定的难度.