在直角梯形OABC中,CB∥OA,COA=90°,OE=2EB,CB=3,OA=6,BA=3,OD=5.分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐

发布时间:2020-08-08 06:16:20

在直角梯形OABC中,CB∥OA,COA=90°,OE=2EB,CB=3,OA=6,BA=3,OD=5.分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.求证:△ODE∽△OBC.

网友回答

证明:过点B作BG⊥x轴交x轴于点G,
∵CB∥OA,∠COA=90°,
又CB=3,∴OG=3,
∴GA=OA-OG=6-3=3,
又BG⊥x轴,
∴在直角三角形AGB中,
BG2=AB2-GA2=-32=36,
∴BG=6,
那么根据勾股定理得:
OB=3,
由已知OE=2BE得:
OE=2,BE=,
由已知和BG⊥x轴得:
OC=BG=6,
∴==,
=,
∴=,
又∠BOC=∠DOE,
∴△ODE∽△OBC.
解析分析:此题可根据已知先过点B作BG⊥x轴交x轴于点G,再由已知和勾股定理求出OB和OE,通过计算得出=,∠BOC为公共角,故,△ODE∽△OBC.

点评:此题考查的知识点是相似三角形的判定、直角三角形的性质.解题的关键是通过作辅助线得直角三角形,由勾股定理求出OB和OE,计算得出两三角形的对应边成比例,夹角为公共角,由此得证.
以上问题属网友观点,不代表本站立场,仅供参考!