在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余

发布时间:2020-08-11 16:42:28

在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:
(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.

网友回答

解:以(1)、(2)、(4)为条件,(3)为结论.
证明:∵AE=CF,
∴AF=CE,
∵AD∥BC,
∴∠A=∠C,
又AD=BC,
∴△ADF≌△CBE(SAS),
∴∠B=∠D.
解析分析:只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.

点评:本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.
以上问题属网友观点,不代表本站立场,仅供参考!