如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,0A与⊙0相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C(1)试判断线段AB与AC的数量关系,并说

发布时间:2020-08-08 06:46:33

如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,0A与⊙0相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C
(1)试判断线段AB与AC的数量关系,并说明理由;
(2)若PC=2,求线段PB的长.

网友回答

解:(1)AB=AC,理由如下:
连接OB.
∵AB切⊙O于B,OA⊥AC,
∴∠OBA=∠OAC=90°,
∴∠OBP+∠ABP=90°,∠ACP+∠APC=90°,
∵OP=OB,
∴∠OBP=∠OPB,
∵∠OPB=∠APC,
∴∠ACP=∠ABC,
∴AB=AC;

(2)延长AP交⊙O于D,连接BD,
设圆半径为r,则OP=OB=r,PA=5-r,
则AB2=OA2-OB2=52-r2,
AC2=PC2-PA2=(22-(5-r)2,
∴52-r2=(2)2-(5-r)2,
解得:r=3,
∴AB=AC=4,
∵PD是直径,
∴∠PBD=90°=∠PAC,
又∵∠DPB=∠CPA,
∴△DPB∽△CPA,

∴,
∴,
∴BP=,
答:线段PB的长为.
解析分析:(1)连接OB,根据切线的性质和垂直得出∠OBA=∠OAC=90°,推出∠OBP+∠ABP=90°,∠ACP+∠CPA=90°,求出∠ACP=∠ABC,根据等腰三角形的判定推出即可;
(2)延长AP交⊙O于D,连接BD,设圆半径为r,则OP=OB=r,PA=5-r,根据AB=AC推出52-r2=(2)2-(5-r)2,求出r,证△DPB∽△CPA,得出,代入求出即可.

点评:本题考查了等腰三角形的性质和判定,相似三角形的性质和判定,切线的性质,勾股定理,直线与圆的位置关系等知识点的应用,主要培养学生运用性质进行推理和计算的能力.本题综合性比较强,有一定的难度.
以上问题属网友观点,不代表本站立场,仅供参考!