已知点A(-2,0),点B(0,2),点C在第二、四象限坐标轴夹角平分线上,∠BAC=60°,那么点C的坐标为________.
网友回答
(-1+,1-),(-1-,1+)
解析分析:首先根据等腰三角形的性质得出CO垂直平分AB,进而求出△ABC是等边三角形,再利用勾股定理求出C到x轴的距离,即可得出C点坐标,同理可以求出所有符合要求的结果.
解答:解:过点C作CM⊥y轴于点M,作CN⊥x轴于点N.
∵点A(-2,0),点B(0,2),
∴AO=BO=2,
又∵点C在第二、四象限坐标轴夹角平分线上,
∴∠BOC=∠COA=45°,
∴CO垂直平分AB(等腰三角形三线合一),
∴CA=CB,(线段垂直平分线上的点到线段两端的距离相等),
∵∠BAC=60°,
∴△ABC是等边三角形(有一个角等于60°的等腰三角形是等边三角形),
∴AB=AC=BC,
∴AB===2;
假设CN=x,则CM=NO=x,NA=x-2,AC=2.
在Rt△CNA中,∵CN2+NA2=AC2,
∴x2+(x-2)2=(2)2,
整理得:x2-2x-2=0,
解得:x1=1+,x2=1-(不合题意舍去),
∴C点的坐标为:(-1-,1+);
当点在第四象限时,同理可得出:△ABC′是等边三角形,C′点的横纵坐标绝对值相等,
设C′点的坐标为(a,-a),
∴a2+(a+2)2=(2)2,
解得:a1=-1-(不合题意舍去),a2=-1+,
C′点的坐标为:(-1+,1-),
故