如图,在四边形ABCD中,AB、BC、CD、DA的长分别为2、2、2、2,且AB⊥BC,则∠BAD的度数等于________.
网友回答
135
解析分析:连接AC,首先在直角△ABC中,运用勾股定理求出AC的长,然后由勾股定理的逆定理判定△ACD为直角三角形,则根据∠BAD=∠CAD+∠BAC,即可求解.
解答:解:(1)连接AC.
∵AB⊥BC于B,
∴∠B=90°,
在△ABC中,
∵∠B=90°,
∴AB2+BC2=AC2,
又∵AB=CB=2,
∴AC=2,∠BAC=∠BCA=45°,
∵CD=2,DA=2,
∴CD2=12,DA2=4,AC2=8.
∴AC2+DA2=CD2,
由勾股定理的逆定理得:∠DAC=90°,
∴∠BAD=∠BAC+∠DAC=45°+90°=135°.
故