如图所示,△ABC中,点P在边AB上,AP=13
网友回答
如图所示,△ABC中,点P在边AB上,AP=13(图1) 如图所示,连接AQ,则有△ABQ.
∵BQ=14
======以下答案可供参考======
供参考答案1:
分析:利用三角形的面积与边长之间的关系,求出阴影部分面积与三角形ABC的关系,代入阴影部分的面积即可求出△ABC的面积. 如图所示,连接AQ,则有△ABQ. ∵BQ=14BC, ∴S△ABQ=14S△ABC,又AP=13AB, ∴S△PBQ=23S△ABQ=14×23S△ABC=16S△ABC. 连接BR, ∵RC=15AC, ∴S△BCR=15S△ABC, 又∵BQ=14BC, ∴S△QCR=34S△BCR=320S△ABC. 连接CP, ∵AP=13AB, ∴S△ACP=13S△ABC, 又∵RC=15AC, ∴S△APR=45S△ACP=415S△ABC. 即:S△PBQ+S△QCR+S△APR=(415+320+16)S△ABC=712S△ABC, S阴影△PQR=(1-712)S△ABC=512S△ABC=19, ∴S△ABC=125×19=45.6(平方厘米). 故答案为45.6.