把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q.
(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时AP?CQ的值为______.将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,则AP?CQ的值是否会改变?
答:______.(填“会”或“不会”)此时AP?CQ的值为______.(不必说明理由)
(2)在(1)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2、图3供解题用)
(3)在(1)的条件下,PQ能否与AC平行?若能,求出y的值;若不能,试说明理由.
网友回答
解:(1)8,不会,8;
∵∠A=∠C=45°,∠APD=∠QDC=90°,
∴△APD∽△CDQ.
∴AP:CD=AD:CQ.
∴即AP×CQ=AD×CD,
∵AB=BC=4,
∴斜边中点为O,
∴AP=PD=2,
∴AP×CQ=2×4=8;
将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.
∵在△APD与△CDQ中,∠A=∠C=45°,
∠APD=180°-45°-(45°+a)=90°-a,
∠CDQ=90°-a,
∴∠APD=∠CDQ.
∴△APD∽△CDQ.
∴=,
∴AP?CQ=AD?CD=AD2=(AC)2=8.
(2)当0°<α≤45°时,如图2,过点D作DM⊥AB于M,DN⊥BC于N,
∵O是斜边的中点,
∴DM=DN=2,
∵CQ=x,则AP=,
∴S△APD=??2=,S△DQC=x×2=x,
∴y=8--x(2≤x<4),
当45°<α<90°时,如图3,过点D作DG⊥BC于G,DG=2
∵CQ=x,
∴AP=,
∴BP=-4
∵=,
即=,MG=…
∴MQ=+(2-x)=
∴y=(0<x<2);
(3)在图(2)的情况下,
∵PQ∥AC时,BP=BQ,
∴AP=QC
∴x=,解得x=2,
∴当x=2时,y=8--2=8-4.
解析分析:(1)根据等腰直角三角形的性质可知∠A=∠C=45°,∠APD=∠QDC=90°,故可得出△APD∽△CDQ,由相似三角形的对应边成比例即可求出AP?CQ的值,当将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α,同理可得△APD∽△CDQ,故可得出结论;
(2)由于三角板DEF的旋转角度不能确定,故应分0°<α≤45°与45°<α<90°时两种情况进行讨论,①当0°<α≤45°时,过点D作DM⊥AB于M,DN⊥BC于N,则DM=DN=2,由于CQ=x,则AP=,再用x表示出△APD及△DQC的面积即可;②当45°<α<90°时,过点D作DG⊥BC于G,DG=2,用x表示出AP及BP的值,再根据=即可求出MG及MQ的值,进而可得出结论;
(3)在图(2)的情况下,根据PQ∥AC时,BP=BQ,即可求出x的值,进而得出结论.
点评:本题考查的是相似三角形的判定与性质及图形旋转的性质,三角形的面积公式,根据题意作出辅助线,构造出直角三角形是解答此题的关键.