如图所示,在Rt△ABC中,AD平分∠BAC,交BC于D,CH⊥AB于H,交AD于F,DE⊥AB垂足为E,求证:四边形CFED是菱形.
网友回答
证明:∵AD平分∠BAC,
∴∠1=∠2,
∵在Rt△ABC中,CH⊥AB于H,
∴∠1+∠AFH=90°,∠2+∠4=90°,
∵∠3=∠AFH,∠1=∠2,
∴∠3=∠4,
∴FC=CD,
∵DE⊥AB垂足为E,∠ACD=90°,∠1=∠2,
∴CD=DE,∴FC=DE,
∵CH⊥AB,DE⊥AB,
∴FC∥DE,
∴四边形CFED是平行四边形,
∵FC=CD,
∴四边形CFED是菱形.
解析分析:首先根据角平分线的性质以及垂直的定义得出∠3=∠4,即可得出FC=CD,进而得出FC∥DE,四边形CFED是平行四边形,进而得出