(1)若(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,求a4+a2+a0的值.(2)已知a,b,c为实数,且a+b+|-1|=4+2-4,求:

发布时间:2020-08-07 12:24:28

(1)若(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,求a4+a2+a0的值.
(2)已知a,b,c为实数,且a+b+|-1|=4+2-4,求:a+2b-3c的值.

网友回答

解:(1)∵(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,
令x=1,则1=a5+a4+a3+a2+a1+a0①,
令x=-1,则-243=-a5+a4-a3+a2-a1+a0②,
①+②得-242=2(a4+a2+a0),
∴a4+a2+a0=-121;

(2)∵a+b+|-1|=4+2-4,
∴a-2+b+1+|-1|+1=4+2-4,
∴(a-2)-4+4+(b+1)-2+1+|-1=0,
∴++|-1|=0,
∵、、|-1|都是非负数,
∴=0,=0,|-1|=0,
∴a=6,b=0,c=2,
∴a+2b-3c=0.
解析分析:(1)由于(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,可分别将x=-1与x=1代入式子,即可求解;
(2)由于、、|-1|都是非负数,而它们满足++|-1|=0
,由此可以得到它们都等于0,然后即可求出a、b、c的值,即可求得a+2b-3c的值.

点评:本题考查了多项式乘多项式的性质以及非负数的性质.
以上问题属网友观点,不代表本站立场,仅供参考!