如图,在矩形ABCD中,AB=3,BC=4,现将点A、C重合,使纸片折叠压平,折痕为EF,那么重叠部分△AEF的面积=________.

发布时间:2020-08-08 06:24:40

如图,在矩形ABCD中,AB=3,BC=4,现将点A、C重合,使纸片折叠压平,折痕为EF,那么重叠部分
△AEF的面积=________.

网友回答


解析分析:重叠部分为△AEF,底为AF,高为AB,根据折叠的性质可知∠AEF=∠CEF,AE=EC,由平行线的性质可知∠CEF=∠AFE,故有∠AEF=∠AFE,可知AE=AF=EC,设AE=AF=EC=x,则BE=4-x,在Rt△ABE中,运用勾股定理列方程求解.


解答:由折叠的性质可知∠AEF=∠CEF,AE=EC,
由平行线的性质可知∠CEF=∠AFE,
∴∠AEF=∠AFE,
∴AE=AF=EC,
设AE=AF=EC=x,则BE=4-x,
在Rt△ABE中,由勾股定理得AB2+BE2=AE2,
即32+(4-x)2=x2,
解得x=,
∴S△AEF=×AF×AB=××3=.
故本题
以上问题属网友观点,不代表本站立场,仅供参考!