如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°且AB=6,过O点作OE⊥AC,垂足为E.
(1)求OE的长;
(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积S.
网友回答
解:(1)∵∠D=60°,
∴∠B=60°(圆周角定理),
又∵AB=6,
∴BC=3,
∵AB是⊙O的直径,
∴∠ACB=90°,
∵OE⊥AC,
∴OE∥BC,
又∵点O是AB中点,
∴OE是△ABC的中位线,
∴OE=BC=3.
(2)连接OC,
则易得△COE≌△AFE,
故阴影部分的面积=扇形FOC的面积,
S扇形FOC==π.
即可得阴影部分的面积为π.
解析分析:(1)根据∠D=60°,可得出∠B=60°,继而求出BC,判断出OE是△ABC的中位线,就可得出OE的长;
(2)连接OC,将阴影部分的面积转化为扇形FOC的面积.
点评:本题考查了扇形的面积计算、含30°角的直角三角形的计算及圆周角定理及垂径定理的知识,综合考察的知识点比较多,难点在第二问,注意将不规则图形转化为规则图形.