已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:(1)b2-4ac>0;(2)abc>0;(3)8a+c>0;(4)6a+3b+c>0,其中正确

发布时间:2020-08-07 03:21:39

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:(1)b2-4ac>0;(2)abc>0;(3)8a+c>0;(4)6a+3b+c>0,其中正确的结论的个数是A.4B.3C.2D.1

网友回答

B
解析分析:根据图象的开口向上,与x轴有两个交点,对称轴是直线x=1,交y轴的负半轴于一点,得到b2-4ac>0,a>0,c<0,-=1,推出b<0,得出abc>0;把x=4代入得到y=16a-8a+c=8a+c>0;把b=-2a代入得到6a+3b+c=c<0;根据所得的结论判断即可.

解答:∵图象的开口向上,与x轴有两个交点,对称轴是直线x=1,交y轴的负半轴于一点,
∴(1)b2-4ac>0,正确;
a>0,c<0,-=1,
∴b=-2a,
∴b<0,
∴abc>0,∴(2)正确;
把x=4代入得:y=16a+4b+c=16a-8a+c=8a+c>0,∴(3)正确;
把b=-2a代入得:6a+3b+c=c<0,∴(4)错误.
故选B.

点评:本题主要考查对二次函数图象与系数的关系,根的判别式,抛物线与X轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!