如图所示,直线l⊥l2,垂足为点O,A、B是直线l上的两点,且OB=2,AB=.直线l绕点O按逆时针方向旋转60°到l1,A、B对应在l1上的点为A′、B′,在直线l2上找点P,使得△B′PA′是以∠PB′A′为顶角的等腰三角形,此时OP=________.
网友回答
解析分析:如图,以点B′为圆心,AB为半径画圆,与l2的交点即是P点.则在直角三角形OB′D中,解直角三角形,即可求解.
解答:(1)在直线l2上找点P,使得△BPA是以∠B为顶角的等腰三角形,
则以点B′为圆心,AB为半径画圆即可.
与l2的交点就是点P.
从B′点作OP的高B′D,
则在直角三角形OB′D中,解直角三角形可知:OD=,
所以PO=-1或+1.
故